序文
本書の企画は,2001年から3年間,高橋晄正を講師に呼んで,「医療統計研究会in田沢湖」という勉強会を開いたことがきっかけとなっている.本書の編著者は,田沢湖にあるロッジで晄正から統計学を学んだことを基にして,いずれは分かり易い本にまとめることができればと考えていた.
高橋晄正と言っても知らない人も多いと思うので,少し紹介させていただく.晄正は秋田県仙北郡西木村(現仙北市)生まれで,1941年に東京帝国大学医学部を卒業し,物療内科に入局した.入局当時のことを振り返って,「医学がその経験の伝承に終わり,“科学”でないことに驚き,がっかりした」と話していたのを思い出す.学生時代に学んだ医学への期待が幻滅に変わっていく過程は彼の著書『新しい医学への道』でも述べられている.それから彼は,医学に“科学”を持ち込みたいと考え,物療内科で増山元三郎から推計学を紹介され,統計学や推計学を学び,「計量診断学」の体系を作り上げていった.
晄正はある研究会の席上で「二重目かくし試験のもとでの対象試験」の採用を強く主張したという.しかし,「半分の患者にニセグスリを飲ませるとは非人道も甚だしい」として二重目かくし試験の不採用になったそうだ.彼は,これは結論を使って証明するようなもので,「使った,治った,効いた」といういわば古典的な「三た論法」ではないか,このような手法でどうやって真の薬効を知りえるのだろうかと嘆いたという.さて,リハビリテーション領域での科学性はどうであろうか.いわゆるこの「三た論法」のレベルから脱却していないとは言わないが,今後,臨床における経験の確かさをしっかりと検証し,さらに客観的な技術体系へと整備していくことは,ますます要求されていくものと考える.
本書は,日々臨床で行っている療法の有効性を客観的に検証できるよう,リハビリテーションの分野で多く使われる統計に焦点をあてている.また,学生など統計学をこれから学ぼうとする初学者に対しても,解析方法の選び方や使い方までを理解できるようにも工夫した.さらに,学会発表や学術論文として投稿にも十分通用するよう配慮した.特に学術論文の投稿に当たっては,信頼性のある統計処理ソフトを使用しないと採用されないということもあるため,1章と3章の解析の実際では,学術論文の提出の際の定番である統計ソフトSPSSRを使用して処理した内容で記載している.
今回,編集部の戸田氏には本当に多大なるご協力をいただいた.心から感謝を申し上げる.本書がリハビリテーションの科学性に少しでも貢献できるのであれば,われわれの望外の幸せである.読者からのご批評をいただきながら,今後さらに成長させていきたいと考えている.
最後に,高橋晄正は『電気治療─その理論と実際』という本を1962年に医歯薬出版から世に送っている.後にこの本は『物理療法の実際』として体系化されたが,これらの本は,日本にリハビリテーションが誕生するころに教科書としても使われた.本書の編著のひとりである高橋は,高橋晄正の墓守をしているが,同じ医歯薬出版から,今回リハビリテーションのための統計の本を出版できることに非常に深い感慨を受け,晄正の墓前で報告させていただいたことを付け加えさせていただく.
2013年1月
高橋 仁美
加賀谷 斉
本書の企画は,2001年から3年間,高橋晄正を講師に呼んで,「医療統計研究会in田沢湖」という勉強会を開いたことがきっかけとなっている.本書の編著者は,田沢湖にあるロッジで晄正から統計学を学んだことを基にして,いずれは分かり易い本にまとめることができればと考えていた.
高橋晄正と言っても知らない人も多いと思うので,少し紹介させていただく.晄正は秋田県仙北郡西木村(現仙北市)生まれで,1941年に東京帝国大学医学部を卒業し,物療内科に入局した.入局当時のことを振り返って,「医学がその経験の伝承に終わり,“科学”でないことに驚き,がっかりした」と話していたのを思い出す.学生時代に学んだ医学への期待が幻滅に変わっていく過程は彼の著書『新しい医学への道』でも述べられている.それから彼は,医学に“科学”を持ち込みたいと考え,物療内科で増山元三郎から推計学を紹介され,統計学や推計学を学び,「計量診断学」の体系を作り上げていった.
晄正はある研究会の席上で「二重目かくし試験のもとでの対象試験」の採用を強く主張したという.しかし,「半分の患者にニセグスリを飲ませるとは非人道も甚だしい」として二重目かくし試験の不採用になったそうだ.彼は,これは結論を使って証明するようなもので,「使った,治った,効いた」といういわば古典的な「三た論法」ではないか,このような手法でどうやって真の薬効を知りえるのだろうかと嘆いたという.さて,リハビリテーション領域での科学性はどうであろうか.いわゆるこの「三た論法」のレベルから脱却していないとは言わないが,今後,臨床における経験の確かさをしっかりと検証し,さらに客観的な技術体系へと整備していくことは,ますます要求されていくものと考える.
本書は,日々臨床で行っている療法の有効性を客観的に検証できるよう,リハビリテーションの分野で多く使われる統計に焦点をあてている.また,学生など統計学をこれから学ぼうとする初学者に対しても,解析方法の選び方や使い方までを理解できるようにも工夫した.さらに,学会発表や学術論文として投稿にも十分通用するよう配慮した.特に学術論文の投稿に当たっては,信頼性のある統計処理ソフトを使用しないと採用されないということもあるため,1章と3章の解析の実際では,学術論文の提出の際の定番である統計ソフトSPSSRを使用して処理した内容で記載している.
今回,編集部の戸田氏には本当に多大なるご協力をいただいた.心から感謝を申し上げる.本書がリハビリテーションの科学性に少しでも貢献できるのであれば,われわれの望外の幸せである.読者からのご批評をいただきながら,今後さらに成長させていきたいと考えている.
最後に,高橋晄正は『電気治療─その理論と実際』という本を1962年に医歯薬出版から世に送っている.後にこの本は『物理療法の実際』として体系化されたが,これらの本は,日本にリハビリテーションが誕生するころに教科書としても使われた.本書の編著のひとりである高橋は,高橋晄正の墓守をしているが,同じ医歯薬出版から,今回リハビリテーションのための統計の本を出版できることに非常に深い感慨を受け,晄正の墓前で報告させていただいたことを付け加えさせていただく.
2013年1月
高橋 仁美
加賀谷 斉
序文
第1章 知っておきたい統計の基礎
(加賀谷 斉)
1 基本事項
1.母集団と標本
2.P値
3.P値の表記法
4.帰無仮説
5.有意水準
6.データの尺度
7.連続変数と離散変数
8.データの代表値
9.正規分布
10.標準偏差と標準誤差
11.信頼区間
12.パラメトリック検定とノンパラメトリック検定
13.正規性の検定
14.対応(関連)があるかないか?
2 実践編
1.散布図を書こう
2.外れ値の原因
3.αエラーとβエラー
4.統計学的有意と臨床的有意
5.症例数の計算
6.データを正規分布させるには?
7.順序尺度に対してパラメトリック検定を使うことができるか?
8.順序尺度の点数はどのようにつけても同じか?
9.相関関係をみたら疑え?
10.検定の多重性
第2章 解析方法のフローチャート
(高橋仁美)
1 2群間の比較
1.独立した(=対応のない)2群間の比較
2.関連した(=対応のある)2群間の比較
2 3群以上の比較
1.独立した(=対応のない)3群以上の比較
2.関連した(=対応のある)3群以上の比較
3 比率の比較
1.2×2分割表とl×m分割表の検定
4 2標本の関連性の検定
1.相関と回帰
5 多変量解析
1.重回帰分析
2.多重ロジスティック回帰分析
第3章 解析の実際
1 対応のないt検定(菅原慶勇)
2 Mann-Whitney検定(見彰淑)
3 対応のあるt検定(見彰淑)
4 Wilcoxon符号付順位和検定,符号検定(加賀谷 斉)
5 一元配置分散分析(見彰淑)
6 Kruskal-Wallis検定(見彰淑)
7 二元配置分散分析(上村佐知子)
8 Friedman検定(見彰淑)
9 多重比較検定(畠山和利)
10 χ2独立性の検定(2×2の分割表)(畠山和利)
11 Fisherの直接確率(畠山和利)
12 McNemar検定(畠山和利)
13 Mantel-Haenszel検定(畠山和利)
14 χ2独立性の検定(l×mの分割表)(畠山和利)
15 χ2適合度検定(畠山和利)
16 相関(菅原慶勇)
17 重回帰分析(菅原慶勇)
18 多重ロジスティック回帰分析(菅原慶勇)
第4章 疫学・EBM理解のためのキーワード
(高橋仁美)
1 診断・検査
1.感度・特異度
2.尤度比
3.カットオフ値
4.ROC曲線
2 リスク・予後
1.コホート研究
2.絶対危険度・寄与危険度・相対危険度
3.症例対照研究
4.オッズ比
5.生存曲線
6.ハザード比
7.コックス比例ハザードモデル
3 治療・予防
1.無作為化比較試験(ランダム化比較試験)
2.ホーソン効果・プラセボ効果
3.盲検化
4.一次予防・二次予防・三次予防
5.ラベリング効果
4 信頼区間とメタ・アナリシス
1.信頼区間
2.メタ・アナリシスとシステマティック・レビュー
本書の参考文献
索引
コラム一覧
Wilcoxon符号付順位和検定と符号検定
統計ソフトは何を使うべきか?
等分散の検定
対応について
分散分析と多重比較検定の関係
一見して分割表にみえる例
回帰直線の式(回帰式)y=ax+bから
多重比較検定の特徴(1)
多重比較検定の特徴(2)
χ2検定とMcNemar検定
χ2適合度検定
相関関係の解釈について
第1章 知っておきたい統計の基礎
(加賀谷 斉)
1 基本事項
1.母集団と標本
2.P値
3.P値の表記法
4.帰無仮説
5.有意水準
6.データの尺度
7.連続変数と離散変数
8.データの代表値
9.正規分布
10.標準偏差と標準誤差
11.信頼区間
12.パラメトリック検定とノンパラメトリック検定
13.正規性の検定
14.対応(関連)があるかないか?
2 実践編
1.散布図を書こう
2.外れ値の原因
3.αエラーとβエラー
4.統計学的有意と臨床的有意
5.症例数の計算
6.データを正規分布させるには?
7.順序尺度に対してパラメトリック検定を使うことができるか?
8.順序尺度の点数はどのようにつけても同じか?
9.相関関係をみたら疑え?
10.検定の多重性
第2章 解析方法のフローチャート
(高橋仁美)
1 2群間の比較
1.独立した(=対応のない)2群間の比較
2.関連した(=対応のある)2群間の比較
2 3群以上の比較
1.独立した(=対応のない)3群以上の比較
2.関連した(=対応のある)3群以上の比較
3 比率の比較
1.2×2分割表とl×m分割表の検定
4 2標本の関連性の検定
1.相関と回帰
5 多変量解析
1.重回帰分析
2.多重ロジスティック回帰分析
第3章 解析の実際
1 対応のないt検定(菅原慶勇)
2 Mann-Whitney検定(見彰淑)
3 対応のあるt検定(見彰淑)
4 Wilcoxon符号付順位和検定,符号検定(加賀谷 斉)
5 一元配置分散分析(見彰淑)
6 Kruskal-Wallis検定(見彰淑)
7 二元配置分散分析(上村佐知子)
8 Friedman検定(見彰淑)
9 多重比較検定(畠山和利)
10 χ2独立性の検定(2×2の分割表)(畠山和利)
11 Fisherの直接確率(畠山和利)
12 McNemar検定(畠山和利)
13 Mantel-Haenszel検定(畠山和利)
14 χ2独立性の検定(l×mの分割表)(畠山和利)
15 χ2適合度検定(畠山和利)
16 相関(菅原慶勇)
17 重回帰分析(菅原慶勇)
18 多重ロジスティック回帰分析(菅原慶勇)
第4章 疫学・EBM理解のためのキーワード
(高橋仁美)
1 診断・検査
1.感度・特異度
2.尤度比
3.カットオフ値
4.ROC曲線
2 リスク・予後
1.コホート研究
2.絶対危険度・寄与危険度・相対危険度
3.症例対照研究
4.オッズ比
5.生存曲線
6.ハザード比
7.コックス比例ハザードモデル
3 治療・予防
1.無作為化比較試験(ランダム化比較試験)
2.ホーソン効果・プラセボ効果
3.盲検化
4.一次予防・二次予防・三次予防
5.ラベリング効果
4 信頼区間とメタ・アナリシス
1.信頼区間
2.メタ・アナリシスとシステマティック・レビュー
本書の参考文献
索引
コラム一覧
Wilcoxon符号付順位和検定と符号検定
統計ソフトは何を使うべきか?
等分散の検定
対応について
分散分析と多重比較検定の関係
一見して分割表にみえる例
回帰直線の式(回帰式)y=ax+bから
多重比較検定の特徴(1)
多重比較検定の特徴(2)
χ2検定とMcNemar検定
χ2適合度検定
相関関係の解釈について








